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We consider quantum dynamics of the order parameter in the discrete pairing model �Richardson model� in
thermodynamic equilibrium. The integrable Richardson Hamiltonian is represented as a direct sum of Hamil-
tonians acting in different Hilbert spaces of single-particle and paired/empty states. This allows us to factorize
the full thermodynamic partition function into a combination of simple terms associated with real spins on
singly occupied states and the partition function of the quantum XY model for Anderson pseudospins associ-
ated with the paired/empty states. Using coherent-state path integral, we calculate the effects of superconduct-
ing phase fluctuations exactly. The contribution of superconducting amplitude fluctuations to the partition
function in the broken-symmetry phase is shown to follow from the Bogoliubov-de Gennes equations in
imaginary time. These equations in turn allow several interesting mappings, e.g., they are shown to be in a
one-to-one correspondence with the one-dimensional Schrödinger equation in supersymmetric quantum me-
chanics. However, the most practically useful approach to calculate functional determinants is found to be via
an analytical continuation of the quantum order parameter to real time, ���→ it�, such that the problem maps
onto that of a driven two-level system. The contribution of a particular dynamic order parameter, ����, to the
partition function is shown to correspond to the sum of the Berry phase and dynamic phase accumulated by the
pseudospin. We also examine a family of exact solutions for two-level-system dynamics on a class of elliptic
functions and suggest a compact expression to estimate the functional determinants on such trajectories. The
possibility of having quantum soliton solutions coexisting with classical BCS mean field is discussed.
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I. INTRODUCTION

The concept of spontaneous symmetry breaking is one of
the cornerstones of modern physics: Most phase transitions
we know are associated with the appearance of a nonzero
local order parameter that represents a broken symmetry and
leads to a state that has a lower symmetry than that of the
underlying Hamiltonian. In elementary particle physics, the
Anderson-Higgs mechanism is the most promising scenario
to explain the appearance of finite masses for elementary
particles, including gauge bosons. The canonical model to
explain the origin of the broken symmetry phenomenon usu-
ally involves a Lagrangian for a boson field, �, that has
quadratic and quartic terms and that can be symbolically
represented as follows: L���=����2+����4+c�D��2, where
D corresponds to a gauge-invariant derivative and �, �, and
c are constants. In the context of elementary particle physics,
it defines a Mexican-hat model for the Higgs boson, which is
a minimal renormalizable field theory that produces symme-
try breaking “by design.” In solid state physics, such a La-
grangian is associated with the Ginzburg-Landau functional
for a fluctuating order parameter near a phase transition and
in many cases it can actually be derived from a more general
microscopic Hamiltonian �which is typically an interacting
fermion model, such that the order-parameter field is associ-
ated with a composite, rather than canonical boson�.

Such a microscopic derivation was first accomplished by
Gor’kov,1 who starting from the BCS Hamiltonian obtained
the Ginzburg-Landau functional for a superconductor and
found explicitly the Ginzburg-Landau coefficients in terms
of microscopic parameters �i.e., electron mass, electron den-
sity, interaction strength, and concentration of impurities�.
The general framework for a derivation of this type now

appears in excellent textbooks2 and can be briefly summa-
rized as follows: one starts with an interacting electron
model that has a “desired” phase transition �e.g., electrons
with attraction for superconductivity�: The partition function
of the model can be expressed in terms a path integral of the
corresponding imaginary-time �Grassmann� action, which in-
cludes a quartic term describing interactions. This term in
path integral can be decoupled via an auxiliary Hubbard-
Stratonovich boson field, ��x����� ,r�. Then, the fermionic
component of the action becomes Gaussian and the fermions
can be integrated out to produce an effective action
Seff���x��, which can be formally expressed as a nonlinear
functional determinant �see, e.g., Eq. �2.6� in Sec. II�. The
Hubbard-Stratonovich field, ��x�, describes a fluctuating in
space and imaginary time, �, order parameter and the appear-

ance of a nonzero expectation value, �̄, of this field below a
certain transition temperature, Tc, is associated with a broken
symmetry phase. In the vicinity of Tc, the relevant trajecto-
ries of ��x� are assumed to be such that its imaginary-time
dependence is unimportant �that is, ��� ,r� is assumed to be
independent of ��, ��r� is in some sense small, and it is also
assumed to be weakly fluctuating in space �long-wavelength
approximation�. Hence, the action can be related to the free
energy by simply writing F���r��=TcS���r��, and expanded
in a Taylor series, which yields the Ginzburg-Landau theory,
with the quadratic coefficient �� �T−Tc�.

The derivation of the Ginzburg-Landau theory outlined
above is justified only near a classical phase transition. Be-
low Tc, the assumptions about � being small and
�-independent break down �if the relevant interaction con-
stant, g, is not small they may break down even “earlier”�.
However, it is exactly the low-temperature phase, including
the ground state that we associate with a spontaneously bro-
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ken symmetry. This picture is based on the very reasonable
assumption that the relevant “trajectories” of the order-
parameter field, ��x�, at low temperatures are located near
the classical saddle-point �̄�const, which becomes the only
possible trajectory at T=0 and therefore represents an exact
solution. This assumption is equivalent to stating that the
effective action, Seff���x��, has one and only one minimum
which occurs in a single “point” in the space of all allowed
functions, ���� ,r�� �modulo the overall phase�. We reiterate
that there is no good reason to expect that the simplified form
of the Ginzburg-Landau action remains reliable at low tem-
peratures. In fact, if we “insist” on the canonical Ginzburg-
Landau form and attempt to derive the corresponding coef-
ficients in the expansion, we shall find that the coefficient of
the quartic term generally diverges as T→0.3,4 Hence, we
have to work with the full functional determinant in
Seff���x��, which is a complicated nonlinear functional and
we know little about its properties apart from its behavior in
a tiny subspace of constant functions. To the best of author’s
knowledge, there is no model �associated with breaking of
continuous symmetry below Tc�0�, where such functional
determinants have been explicitly calculated beyond the clas-
sical mean-field analysis.

The objectives of this work are to bring up the general
problem of nonperturbative quantum dynamics in broken-
symmetry phases and to construct a general framework to
calculate functional determinants that appear in the nonlinear
effective action for quantum trajectories of the order param-
eter in the pairing model. The latter is a seemingly hopeless
goal but we show that one can obtain exact results in certain
cases and based on those results formulate a more general
Ansätz that is expected to be useful for a large class of quan-
tum trajectories. To address this and other related questions,
we employ the Richardson pairing model,5–7 which is an
interacting fermion model that has a paired ground state
built-in. In fact, it is “almost” the mean-field BCS model in
the sense that the corresponding order parameter does not
have any real-space dependence and so all such fluctuations8

have been eliminated. However, the model still retains quan-
tum dynamics of ����. The Richardson model is integrable
and there exists an exact Bethe-Ansätz solution,5,7 which de-
termines the exact eigenstates and spectrum of the model in
sectors with a fixed number of single-particle excitations and
Cooper pairs. However, this algebraic Bethe Ansätz solution
does not appear to be very helpful in calculating the thermo-
dynamic partition function in the grand-canonical ensemble
and we use an alternative method, which is based on
coherent-state path-integral representation of Anderson
pseudospins,9 describing the BCS sector of the model. We
use a mapping of the equilibrium problem in imaginary time
onto that of nonequilibrium superconductivity, and take ad-
vantage of the exact nonequilibrium solutions, obtained re-
cently in a series of amazing papers by Levitov et al.10 and
Yuzbashyan et al.11,12 By analyzing a certain family of exact
results, we propose a general closed expression to estimate
the corresponding functional determinant, which is not al-
ways exact but is expected to be quantitatively reliable for a
large class of elliptic functions and their limits.

Our paper is structured as follows: in Sec. II, we present
the canonical Richardson model and formulate in more tech-

nical details the key questions within the conventional Grass-
mann path integral/Hubbard-Stratonovich approach. The
questions involve studying various aspects of fluctuation
physics and they are addressed in the rest of the manuscript
using a variety of techniques: in Sec. III, we derive combi-
natorially an exact expression for the thermodynamic parti-
tion function of a generalized Richardson model in terms of
a “spin partition function” associated with single-particle
states and an “Anderson pseudospin partition function” asso-
ciated with the paired/empty states. The generalized Richard-
son model includes the canonical Richardson model �reduced
BCS Hamiltonian� as a particular case, and in this limit, the
spin part of the partition function becomes trivial, so that the
problem reduces to the problem of calculating contributions
of Anderson pseudospins to the partition function. Section IV
formulates a coherent-state path integral for Anderson pseu-
dospins to calculate the functional determinants of interest. It
is shown that by introducing a single Hubbard-Stratonovich
field one can represent the full thermodynamic partition
function as a product of terms local in parameter space. The
contribution of each such local term to the partition function
follows from the Bogoliubov-de Gennes equation in imagi-
nary time. In Sec. V, we study phase fluctuations within the
path integral formalism and obtain an exact expression for
the partition function in terms of a sum of phase winding
numbers. Section VI is the main part of the paper, which
addresses the question of �possible� fluctuations of the am-
plitude of the order parameter, assuming that the phase fluc-
tuations are completely suppressed. Section VI contains sev-
eral parts: in Sec. VI A, the symmetry properties of the
imaginary-time Bogoliubov-de Gennes equations are dis-
cussed and it is shown that the full density matrix solution

satisfying the proper initial condition, ���→0�=1̂, can be
constructed from a particular spinor solution satisfying arbi-
trary initial conditions. In Sec. VI B, we show that the gen-
eral problem of solving imaginary-time Bogoliubov-de
Gennes equations in the presence of a quantum-fluctuating
order-parameter field is equivalent to that of a one-
dimensional supersymmetric Schrödinger equation with “su-
perpotentials” determined uniquely by ����. Therefore, the
cases where these two problems are solvable are shown to be
closely related. Section VI C 1 derives an exact expression
for the full density matrix, �̂���, corresponding to a nontrivial
dynamic order parameter, representing the soliton of Ref. 10
analytically continued to imaginary time. The resulting func-
tional determinant is found to be surprisingly simple and is
equivalent to that of a Fermi gas. Section VI C 1 suggests
that the simplification of the functional determinant observed
in Sec. VI C 1 is not accidental but has a natural explanation:
it is argued that the effective action associated with a given
quantum fluctuating, ����, is given by the sum of the dy-
namical phase and Berry phase accumulated by a two-level
system driven by a time-dependent magnetic field deter-
mined by the analytically continued order parameter,
���→ it�. This conjecture is verified to work well on a large
class of functions, where ���+ it� is an elliptic function with
two primitive periods along the � and it axes. A general
expression for the corresponding effective action is presented
in Sec. VI D and the possible implications of the results ob-
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tained to nonperturbative quantum dynamics of the super-
conducting order parameter are discussed.

II. RICHARDSON PAIRING MODEL AND KEY
QUESTIONS

Let us consider spin-1/2 fermions, described by the
creation/annihilation operators, ĉl,s

† and ĉl,s, labeled by the
spin index s=	1 and the index l�L, where L is a set of
allowed single-particle states. It can be a discrete, possibly
finite, set �associated, for example, with localized levels in a
mesoscopic superconducting grain13–15� or a continuum of
momentum states in a system with open boundary conditions
�such that �l ,s� and �l ,−s� are a pair of time-reversed states�.
We will refer to the states l as to “sites.” We perform some
formal mathematical manipulations assuming that L is dis-
crete and finite, but it is without a loss of generality, as this
assumption does not preclude us from taking the proper limit
at any stage of the calculation. The canonical Richardson
Hamiltonian �or equivalently the reduced BCS Hamiltonian�
describing an s-wave superconductor has the form

ĤR = �
l�L,s=	


lĉl,s
† ĉl,s −

g

2VL
�

l,l��L
ĉl,+

† ĉl,−
† ĉl�,−ĉl�,+, �2.1�

where VL is either the number of sites in L, if the set L is
discrete, or otherwise if L represents a continuum spectrum,
VL is a volume �in this case, the sums are to be replaced with
integrals over momenta, k� l�. In what follows, we will also
use the notation g̃=g / �2VL�.

To formulate the main questions, let us first follow the
conventional method of treating Hamiltonian �2.1� and rep-
resent the partition function as a Grassmann path integral

ZR =	 Dc̄l,s���Dcl,s���exp
− 	
0

�

d� �
l,l��L

���l,l�c̄l,s�
l − ���cl,s − g̃c̄l,+c̄l,−cl�,−cl�,+�� . �2.2�

Now, we use the identity, eg̃c̄c̄�c�c=� d2�
�g̃�exp�− 1

g̃ ���2

+ 1
2

��c̄c̄�+ �̄c�c��, and introduce the Hubbard-Stratonovich
field, ����, to decouple the interaction term in the Grassmann
action, integrate out the fermions from the resulting qua-
dratic theory, and arrive to the following standard effective
action expressed in terms of the order-parameter field

ZR =	 D�����D����e−1/g̃�0
�d�������2

��
l�L

Det��� − 
l�̂
z − Re ��̂x + Im ��̂y� , �2.3�

where �̂ are two-by-two Pauli matrices in the Nambu space
and the determinant is to be evaluated over both the time
variable and the Nambu space. To trace over the Nambu
space, one can use the identity below

Det�A B

C D
� = det�AD�det�1 − D−1CA−1B� , �2.4�

which is valid for any matrices/operators A, B, C, and D,
provided that A and D are invertible. Applying this identity
to Eq. �2.3�, we find

ZR = ZFG	 D�����D����

�exp
−
1

g̃
	

0

�

d�������2 + Seff������� , �2.5�

where the effective action is given by

Seff������ = �
l�L

Tr ln�1 − Gl
+ · �� · Gl

− · �� �2.6�

and ZFG=�l�Ldet���
2−
l

2� is the partition function of a non-
interacting Fermi gas given by Eq. �3.18� below. Here
Gl
	= ���	
l�−1 are Green’s functions, whose explicit form in
� representation is easy to obtain.

Calculating formally the first variation in the effective ac-
tion Seff��� with respect to ���� leads to the mean-field equa-
tion for an extremum �MF��� of the functional, which gener-
ally has the complicated operator form

1

g̃
�MF

� ������ − ��� = �
l�L

�1 − Gl
+ · �MF

� · Gl
− · �MF�−1

· �Gl
+ · �MF

� · Gl
−���,��� , �2.7�

where the right-hand side is to be understood as a kernel of
the corresponding operator in � representation � i.e., a
kernel, K�� ,���, defines an operator by its action on
an arbitrary �-periodic function, f���, as follows

K̂ · f���=�0
�K�� ,���f����d�� �. The Eq. �2.7� can be cast into a

more friendly form of an integral equation but it would still
remain too complicated for a systematic analysis. We do
however know that there exists a solution to this equation,
which is a constant that in the classical BCS model is given

by �̄BCS� �̃0e−1/��g� �here we have to assume that L is mo-
mentum space and �

l�L
· =VL��d
l·, � is the density of states

at the Fermi level, and �̃0 is the usual high-energy cutoff to
regularize the Cooper logarithm�. One can verify explicitly

that indeed �̄BCS is a true minimum �i.e., it is not only a
minimum on a tiny subset of constant functions, but a true
minimum on the space of allowed functions, ����=���+���,
but there are still a few important questions that remain: �i�
does the classical BCS mean-field result represent the only
minimum at 0�T�Tc, or there may exist quantum
nonperturbative trajectories of ����, which would give con-
tributions energetically comparable to the classical mean-
field �or better�? �ii� A related key technical question is
whether it is possible to calculate the functional determinant,
det�1−Gl

+ ·�� ·Gl
− ·��, for “trajectories” of the order param-

eter with nontrivial quantum dynamics? �iii� What are the
effects of quantum fluctuations16,17 of the modulus and/or
phase of the order parameter on thermodynamics �e.g., the
energy of the ground state�? We will address these questions
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to some extent in the following sections using an alternative
method, namely, the path-integral formalism for Anderson
pseudospins.

III. FACTORIZATION OF THE GENERALIZED
RICHARDSON HAMILTONIAN

The Richardson Hamiltonian �2.1� is known to be
integrable5,7 and its integrability is due to the existence of an
infinite number of conservation laws at two levels of the
problem: First, the Hamiltonian commutes with the z com-
ponent of the spin on any site and therefore the Hilbert sub-
spaces associated with the singly occupied states and the
paired/empty states are separated and can be studied
independently.18 After this factorization, the Hamiltonian for
paired states reduces to a pseudospin Hamiltonian �expressed
in terms of Anderson pseudospins�. As Richardon discov-
ered, the pseudospin Hamiltonian amazingly has an infinite
number of conservation laws as well and this allowed him to
construct an exact Bethe-Ansätz solution to the correspond-
ing spin problem in a given sector �with a fixed total pseu-
dospin�, and in particular, find a set of coupled algebraic
equations determining the energy spectrum in the sector. The
Richardson equations are exact and therefore include cor-
rectly all quantum fluctuation effects but this exactness also
makes it difficult to use the solution for practical purposes
and to interpret its physical meaning because the solution
mixes up fluctuations of the order parameter of different
types. In addition, the Richardson equations are still too
complicated to allow a further analytic treatment and most
importantly they address different pseudospin sectors inde-
pendently. For this reason, we do not use the results of the
algebraic Bethe-Ansätz approach to calculate thermody-
namic properties of the model but we find it however very
useful to perform the first simpler step in the Richardson’s
solution, i.e., to factorize the Hilbert space into single-
particle and paired/empty states. It turns out that this factor-
ization is allowed for a more general Hamiltonian than Eq.
�2.1� and in the interest of generality and future work, we
present this procedure for such a more general model, which
we dub the generalized Richardson model �e.g., Eq. �3.4�
below represents a generalized Ising-Richardson model�.

Let us define the density, spin, and Cooper pair operators
on each site as follows:

�̂l = �
s=	

ĉl,s
† ĉl,s �3.1�

is the density operator

Ŝl =
1

2 �
s=	

ĉl,s
† �s,s�ĉl,s� �3.2�

is the spin, with Ŝl
z= 1

2�s=	sĉl,s
† ĉl,s being its z component, and

P̂l
† =

1

2 �
s=	

sĉl,s
† ĉl,−s

† �3.3�

is the Cooper pair operator. Clearly P̂l��P̂l
†�†= ĉl,−ĉl,+.

Let us now use these operators to express the following
generalized Ising-Richardson model:

ĤGR = �
l�L

�
l�̂l − BlŜl
z� − �

l1,l2�L
�g̃l1,l2

P̂l1
† P̂l2

− J̃l1,l2
Ŝl1

z Ŝl2
z � ,

�3.4�

where 
l describes single-particle energy eigenvalues/
spectrum, Bl is an applied magnetic field in the z direction, g̃

is an interaction in the BCS channel, and J̃ is an Ising-type
spin interaction. We reiterate that the special case of Hamil-

tonian �3.4� with J̃=B=0 and g̃l1,l2
� g̃=const. yields the ca-

nonical s-wave Richardson pairing model in Eq. �2.1� that
we actually will study in the rest of the paper.

However, the more general Hamiltonian �3.4� has the
same “local” in L conservation laws since it commutes with

the z component of the spin, Ŝl
z, on any site

�ĤGR, Ŝl
z� = 0, ∀ l � L . �3.5�

This allows us to define the following projectors for an arbi-
trary subset of L

P̂1�L1� = �
l�L1

�2Ŝl
z�2 �3.6�

and

P̂2�L2� = �
l�L2

�1̂ − �2Ŝl
z�2� , �3.7�

where L1,2�L. Note also that P̂1,2
2 �L1,2�= P̂1,2�L1,2�. By

convention we shall denote the projectors on a single site
�i.e., if the corresponding subset consists of a single element,

L1,2= �l�� as follows: P̂1�l�= �2Ŝl
z�2 and P̂2�l�=1̂− �2Ŝl

z�2. Ob-
viously for those single-site projectors we have

P̂1�l� + P̂2�l� = 1̂. �3.8�

This resolution of unity allows us to represent the Hamil-
tonian �3.4� as a sum of Hamiltonians acting in different
“sectors” of the Hilbert space as follows:

ĤGR � �
l�L

�P̂1�l� + P̂2�l��ĤGR = �
L1�L2=L

P̂1�L1�P̂2�L2�ĤGR.

�3.9�

Each term in the above sum represents two Hamiltonians
acting on single-particle states in L1 and paired/empty states
in L2. The corresponding spin and pairing Hamiltonians are

Ĥspin�L1� = P̂1�L1�
 �
l�L1

�
l�̂l − BlŜl
z� + �

l1,l2�L1

J̃l1,l2
Ŝl1

z Ŝl2
z �

�3.10�

and

ĤBCS��L2� = P̂2�L2�
 �
l�L2


l�̂l − �
l1,l2�L1

g̃l1,l2
P̂l1

† P̂l2� .

�3.11�

Now, one can follow Anderson and check that the operators

P̂l
†, P̂l, and ��̂l−1̂�, when constrained by the projector on

empty/paired states, form a closed su�2� algebra on each site

VICTOR GALITSKI PHYSICAL REVIEW B 82, 054511 �2010�

054511-4



�here and below, we use the symbol, su�2�, for the Lie
algebra and SU�2� for the Lie group� or in other words, the
operators are Anderson pseudospins. One can therefore
drop the projectors and replace the operators with Pauli

matrices �since, P̂l
2=0, we have to use the two-dimensional

representation� P̂l
†= �̂l

+, P̂l= �̂l
−, and �̂l= �̂l

z+1. Similarly, one
can remove the projector in Eq. �3.10� and simply replace �̂l
with one, since each site in L1 is guaranteed to be singly
occupied by construction. This leads to the following decom-
position of the Hamiltonian �3.4�:

ĤGR = �
L1�L2=L

�Ĥspin�L1� + ĤBCS��L2�� , �3.12�

where Ĥspin�L1� and ĤBCS��L2� are spin-1/2 Hamiltonians
acting in different Hilbert spaces. These spin Hamiltonians
are of Ising and XY type correspondingly

Ĥspin�L1� = �
l�L1

�
l −
1

2
Bl�̂l

z� +
1

4 �
l1,l2�L1

J̃l1,l2
�̂l1

z �̂l2
z

�3.13�

and

ĤBCS��L2� = �
l�L2


l��̂l
z + 1� − �

l1,l2�L2

g̃l1,l2
�̂l1

+ �̂l2
− .

�3.14�

Since the Hamiltonian �3.4� does not have operators that
connect different partitions of L, the total partition function
is given by a combination of the products of the partition
functions corresponding to the Ising and XY models on dif-
ferent sets

ZGR = �
L1�L2=L

Zspin�L1�� ZBCS��L2� . �3.15�

Note that factorization of the Hilbert space into single-
particle and pair/empty states, which led us to Eq. �3.15�,
does not require that Ŝl

z is locally conserved, but requires
only that the spin and pseudospin sectors can be uncoupled
via projectors in Eqs. �3.6� and �3.7�, which is a much
weaker requirement. This implies that this construction may
be applied to even more general Hamiltonians of type Eq.
�3.4�, which include quantum interaction terms for real spin.
This avenue will be explored elsewhere19 but here we instead
focus on the much simpler canonical Richardson pairing
Hamiltonian �2.1�, where there are no interactions for real

spins �J̃l1,l2
�0�, nor there are magnetic fields �Bl=0�, and

hence the partition function associated with the single par-
ticle states is simply Zspin�L1�=�l�L1

�2e−�
l�, so that the full
partition function of the pairing model is simplified to

ZR = �
L1�L2=L

�
l1�L1

�2e−�
l1�ZBCS��L2� , �3.16�

where ZBCS��L2� is the partition function of the XY model

given by ĤBCS��L2� in Eq. �3.14� on a subset L2�L and
where g̃l1,l2

�g / �2VL�. We will use this decomposition in Eq.
�3.16� in the remainder of the paper.

To run a simple sanity check on the result obtained, we
consider the noninteracting case with g=0, i.e., the Fermi
gas. Equation �3.14� therefore is the Hamiltonian of nonin-
teracting pseudospins in magnetic fields, bl= �0,0 ,
l�, and
the partition function is given by

ZFG = �
L1�L2=L

�
l1�L1

�2e−�
l1� �
l2�L2

�e−�
l22 cosh��
l2
�� .

�3.17�

Since the partition function involves products of local in L
terms and all possible decompositions are to be considered,
we can equivalently rewrite Eq. �3.17� as follows:

ZFG = �
l�L

�2e−�
l + e−�
l2 cosh��
l�� = �
l�L

�1 + e−�
l�2,

�3.18�

which is indeed the partition function of a noninteracting
Fermi gas of spin-1/2 particles.

IV. PATH INTEGRAL FOR ANDERSON PSEUDOSPINS

In Sec. III, we showed that the full partition function of
the Richardson model is given by

ZR = exp�− ��
l�L

l� �

L1�L2=L
� �

l1�L1

2�ZBCS�L2� , �4.1�

where ZBCS is the partition function of the XY Hamiltonian
with infinite-range interactions �here, we subtract a constant

from the Hamiltonian ĤBCS� given by Eq. �3.14� and set
g̃l1,l2

� g̃�

ĤBCS�L2� = �
l�L2


l�̂l
z −

g

2VL
� �

l�L2

�̂l
+�� �

l��L2

�̂l�
−� . �4.2�

To calculate the partition function, we employ the coherent-
state spin path integral formalism and write it in the form

ZBCS�L2� =	 � �
l�L2

D�l����
�exp
− 	

0

�

d�� �
l�L2

�−
i

2
�̇l�1 + �l� + 
l�l�

− g̃ �
l,l��L2

nl
+nl�

−�� , �4.3�

where nl= �sin �l cos �l , sin �l sin �l , cos �l� is a vector con-
strained to move on a unit sphere, �l=cos �l,
nl
	= �nl

x	 inl
y� /2, and d�l��i�=d�l��i�d�l��i� for any imagi-

nary time, �i� �0,�=1 /T�.
We now perform the Hubbard-Stratonovich decoupling

for the interaction term in the spin path integral, which al-
lows us to write the full partition function in the form

ZR = exp�− ��
l�L

l�	 D2�����

g̃
�

�e−1/g̃�0
�d�������2 �

l�L
�2 + zl������� , �4.4�
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where the zl is a local path integral, which depends on a
realization of the “global” Hubbard-Stratonovich field

zl������ =	 D����exp
− 	
0

�

d��−
i

2
�̇�1 + �� + 
l�

+ �����n− + ����n+�� . �4.5�

Note that in Eq. �4.4� the explicit factorization of the terms
into single-particle and paired/empty states is no longer nec-
essary due to “locality” of the “dynamic partition function,”
zl, after the Hubbard-Stratonovich decomposition. The con-
tribution of the single-particle terms is simply given by the
factor of two in Eq. �4.4�.

To treat the path integral in Eq. �4.5�, we note that it can
be “generated” as a solution to the following differential
equation for a “density matrix,” �̂l

� �̂l

��
= − ĥl����̂l � − � 
l ����

����� − 
l
��̂l, with �̂�0� = 1̂.

�4.6�

The trace of the two-by-two “density matrix” evaluated at
�=� gives the desired partition function

zl = Tr �̂l��� . �4.7�

This relation can be proven by writing a formal solution to
Eqs. �4.6� as a �-ordered exponential and then expressing it
as a path integral to reproduce exactly Eq. �4.5�.

To verify that the formulas obtained so far are consistent
with what is known, let us consider the case of the classical
mean field, where the order parameter is taken to be a

constant �BCS MF���� �̄BCS=const. In this case the

solution to Eqs. �4.6� is given by �̂l
�0����=exp�−ĥl��. Since,

ĥl=
l�̂
z+Re �̄�̂x−Im �̄�̂y and we can write

�̂l
�0���� = 1̂ cosh�El�� − �nl · �̂�sinh�El�� , �4.8�

where ĥl=El�nl · �̂� with �nl�=1 so that El=
l
2+ ��̄�2 is the

familiar quasiparticle spectrum in BCS theory, which in the
pseudospin language translates into an effective magnetic
field experienced by a pseudospin. Calculating the trace,
we recover the partition function of a spin-1/2 in a
magnetic field of magnitude �bl�=El: zl

�0�=2 cosh�El��.
Now returning to Eq. �4.4� and noticing that
�2+2 cosh�El���= �2 cosh�

El�

2 ��2, we can write the classical
mean-field contribution to the partition function as follows:

ZBCS MF = exp�− ��
l�L

l�	 d2�̄

g̃

�exp
−
���̄�2

g̃
+ 2�

l�L
ln�2 cosh�El�

2
��� ,

�4.9�

where we recall that g̃=g / �2VL�. Varying the action with

respect to �̄, we indeed recover the familiar BCS self-
consistency equation

1

g
= 2VL�

l�L
El

−1 tanh�El�

2
� . �4.10�

We note that even though the classic BCS equation follows
from the Richardson Hamiltonian, this zero-dimensional
model does not have a true �classical� phase transition. In

particular, if we calculate the Riemann integral over �̄ that
appears within the classical mean-field approximation in Eq.
�4.9�, the resulting function ZBCS MF�T� will be continuous in
the vicinity of a nominal Tc �e.g., one can expand the free
energy into a Taylor series and obtain a zero-dimensional
Landau theory, which leads to a continuous partition function
expressed in terms of the error function; see Ref. 16 for
details�. If the underlying physical model is higher dimen-
sional, then a phase transition is anticipated,16 and we can
interpret the temperature at which a derivative of the parti-
tion function over T has the sharpest slope as a temperature
where the phase transition occurs. However, it is not only the
partition function itself that is of primary interest but also the
trajectories that provide main contributions to it. In the
weak-coupling limit, the transition point can in turn be iden-
tified �in the leading approximation with respect to g� with
the point where a nontrivial solution to the self-consistency
Eq. �4.10� first appears but in strong coupling this is not
necessarily so. We note that one can use the simple BCS
result in Eq. �4.9� for estimates of Tc�g� by examining the
partition function as explained above �i.e., looking for a tem-
perature where the slope of its second derivative is the sharp-
est�. However, of course this procedure is not quantitatively
reliable as it neglects superconducting fluctuations in real
space �which are classical fluctuations for the purpose of
determining Tc�, which have been excluded from Richardson
model from the outset. In what follows, we will not address
the very interesting question of determining Tc in strong cou-
pling but instead will focus on the effects of quantum dy-
namics of the order parameter.

V. PHASE FLUCTUATIONS

Let us now express the order parameter in Eq. �4.4� ex-
plicitly as a product of a time-dependent amplitude part and
a phase factor, ����=�0���ei����. To proceed further, we note
that the first term �the factor of 2� in the product in Eq. �4.4�
originates from single-particle states, which are free �real�
spins and as such this factor of two is nothing but a partition
function of a free spin-1/2. In the path-integral language, it
can be generated by the action, which contains just a Wess-
Zumino term and no Hamiltonian. For example, we can use
the following “representation of the factor of 2:”

2 =	 D����ei/2�0
�d��̇�1+��. �5.1�

Such Wess-Zumino terms appear in the factors zl in Eqs.
�4.4� and �4.5� as well and we get
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ZR = e−� �
l�L

l	 D2�����

g̃
���

l�L
D�l����

�exp
− 	
0

�

d��1

g̃
�0

2��� −
i

2 �
l�L
�̇l�1 + �l���

� �
l�L

1 + exp�− 	

0

�

d��
l�l − 2�0 cos��l − ��

�1 − �l
2��� . �5.2�

We note here that the first term in the product, which is equal
to one within our conventional Richardson model in Eq.
�2.1�, will have a more complicated form in the generalized
Richardson Hamiltonian �3.4�, where it should be related to
the partition function of an Ising model for real spins on
singly occupied sites.

We now perform the following change in variables �gauge
transformation� �l→�l���+����. The dependence of the ac-
tion on the overall phase of the order parameter disappears
from the last term in the product in Eq. �5.2� and appears
only in the Wess-Zumino term. The corresponding
�-dependent part of the action therefore reads

S� = −
i

2
	

0

�

d��
l�L
�̇����1 + �l���� . �5.3�

We can now evaluate the path integral over ����, following
Ref. 20 and keeping in mind the periodic boundary condi-
tions for ���� and n��� so that ����−��0�=2q with q�Z.
Therefore, we obtain

	 D����e−S� = �
q�Z

exp
2iq�
l

�1 + �l�0��/2����
l

�̇l���� .

�5.4�

Hence, the phase fluctuations of the order parameter con-
strain the sum �l�l��� to be equal to a constant at all times.
The resulting sum over q can be rewritten as an inverse
discrete Fourier transform

�
q�Z

e2iqx = �
N�Z

��x − N� .

Therefore, the result of path integration in Eq. �5.4� is

	 D�e−S� = �
N�Z

���
l�L

1

2
�1 + �l���� − N� . �5.5�

The partition function for Anderson pseudospins in Eq. �5.2�
reads

ZR = e−� �
l�L

l �

N=0

� 	 D� �0
2

2g̃
���

l�L
D�l�

����
l�L

1 + �l���
2

− N�e−S�0
−SWZ−Seff��nl��, �5.6�

where we limited the sum over N to positive values only
because �1+�l��0 �if the set L is finite we can restrict the

sum to N�VL� and the path integral over the order param-
eter field includes only the dynamics of the modulus. In Eq.
�5.6�, S�0

is the “bare action” for the order parameter field,
SWZ is the sum of all Wess-Zumino terms for the pseu-
dospins, and the interacting part of the effective action reads

e−Seff��nl��

= �
l�L

1 + exp�− 	

0

�

d��
l�l − 2�0 cos �l
1 − �l

2��� .

�5.7�

We see that the effect of phase fluctuations of ���� is to
separate the partition function into “sectors,” where the total
projection of the z component of Anderson pseudospins is a
constant integer at all times. This analogy can be made more
explicit, if we imagine the associated real-time pseudospin

dynamics, governed by the Bloch equation, Ṁl=bl�Ml, and
where the effective magnetic field is determined by
bl= �Re �0�it� , Im �0�−it� ,
l� �where �0�−it� is the modulus
of the order parameter properly analytically continued to real
times, �→ it�. The � functions in Eq. �5.6� demand that the
real-time dynamics of individual pseudospins must be corre-
lated in such a way that they pin the “total pseudospin mo-
ment,” �lMl

z�t�, to a constant. Note that these constraints
imposed by the phase fluctuations are in addition to the con-
straint that may be imposed by any mean-field treatment of
the remaining path integral over the amplitude �0. From this,
one can see that our ability or lack thereof to satisfy a certain
mean field �in a mesoscopic integrable system13,14�, e.g., a
constant amplitude such as in classic BCS mean field, is
determined by the initial conditions for the pseudospins.

The physical meaning of all these results can be clarified
if we first consider the subset of paired/empty states and
recall that the density operator on a site, l, Eq. �3.1� of the
original model is given by �̂l=1+ �̂l

z for the paired/empty
states l�L2�L, so that the Anderson “spin-up” corresponds
to the existence of a Cooper pair and a “spin-down” to an
empty site. Therefore the operator corresponding to the total
number of Cooper pairs is given by

N̂CP =
1

2 �
l�L2

�1 + �̂l
z� �5.8�

and the time-dependent field in the path-integral formalism
corresponding to this operator is given by

NCP��� =
1

2 �
l�L2

�1 + cos �l���� �
1

2 �
l�L2

�1 + �l���� .

�5.9�

From Eqs. �5.3� and �5.9�, we see that the action that in-
cludes the phase of the order parameter can be written as
follows:

S��L2� = − i	
0

�

d��̇���NCP��� . �5.10�

Therefore, we recover the fact that in the absence of gapless
excitations, the phase of a Bose field operator and the num-
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ber of bosons �Cooper pairs in our case� are canonically con-
jugate operators, satisfying therefore the Heisenberg uncer-
tainty principle. However, the effective action in Eq. �5.7�
may contain contributions from single-particle states as well
�they are associated with the factor of one in the sum in Eq.
�5.7�� and if we allow such states, i.e., if l�L1��, then the
canonical conjugate to the phase, �̂, the way it is defined
above, will also have a contribution from the real spins on
singly occupied sites. The meaning of the field �1+�l���� /2
is different for those singly occupied states and relates to the
z component of the actual magnetic moment of a site. This
suggests an interesting relation for the full phase action in
Eq. �5.3�, which now includes contributions from both
paired/empty states and single-particle states

S��L� = − i	
0

�

d��̇����1

2
Ntot��� + Stot

z ���� , �5.11�

where Ntot��� and Stot
z ��� are fields corresponding to the total

number of particles and the total magnetic moment of the
system. If single-particle states are completely gapped out as
it is usually assumed, then all particles are bound in
Cooper pairs, the total magnetic moment is identically
zero and we recover the familiar conclusion summarized by
Eq. �5.10�. But in general, the Hamiltonian version
of Eq. �5.11� will be a Heisenberg uncertainty
relation/commutator, which involves both the superconduct-
ing part �Anderson pseudospins� and a magnetic part �real

spins�: ��̂ , 1
2N̂tot+ Ŝtot

z �= i1̂. We reiterate here that while our
model is “biased” toward a superconducting state and has no
magnetic interactions for real spins, a more general Richard-
son Hamiltonian �see, e.g., Eq. �3.4�� may have nontrivial
magnetic interactions �see, e.g., Eq. �3.13��, which, in prin-
ciple, may lead to a magnetic phase transition that would
compete with superconductivity, c.f., Refs. 21–24.

Both Ntot and Stot
z are certainly good quantum numbers

and are separately conserved. Hence, the phase, � fluctuates
strongly �via the Heisenberg uncertainty principle� and since
we treated these fluctuations exactly in Eq. �5.6�, the
�-function constraints there effectively enforce these under-
lying global conservation laws. An important question is
whether we actually need to enforce them to describe a real-
istic superconductor. The classic description of an s-wave
superconducting ground state requires no gapless excitations
�L1=�� and hence the phase �̂ is identified with the phase of
a Cooper-pair superfluid with broken gauge symmetry �that
is, � does not fluctuate�. Per the same Heisenberg uncertainty

principle, we must require then that either N̂CP or Ŝtot
z or both

fluctuate strongly �in a closed system, it must be both, be-
cause the only way by which NCP can change is by breaking
Cooper pairs into single-particle excitations�.

Another more technical way to argue in favor of the same
conclusion is to consider a Richardson model or a more gen-
eral �nonintegrable� physical Hamiltonian from which it de-
scends, weakly coupled to a bath and/or to a noisy magnetic
field. Then, we are allowed to break weakly some constraints
associated with the global conservation laws. This can be
done by “softening” the � functions in Eq. �5.6�: e.g., we can
represent each � function as a narrow Gaussian and then

allow a finite width to the Gaussian, which would be equiva-
lent to introducing a charging-energylike term to the action
�S����̇2d� that penalizes phase fluctuations. Both these ar-
guments suggest that to describe a realistic superconductor in
the actual broken-symmetry phase, we have to suppress
phase fluctuations, which can be accomplished by dropping
the S� term and the resulting constraints in the partition func-
tion in Eq. �5.6�. This however brings up the question of
whether the low-temperature state with broken gauge sym-
metry will allow fluctuations of the amplitude of the order
parameter and if yes, whether they are purely mesoscopic or
may involve more serious nonperturbative solutions.

VI. AMPLITUDE FLUCTUATIONS

A. Bogoliubov-de Gennes equations in imaginary time

We now consider the amplitude fluctuations assuming that
the phase fluctuations are suppressed. As it was shown in
Sec. IV, the partition function, originating from a nontrivial
fluctuating order parameter field, is given by the trace of the
density matrix zl��0����=Tr �̂���, which now is the solution
to the following Bogoliubov-de Gennes equation in imagi-
nary time with a real but generally time-dependent �0���

� �̂l

��
= ĥl����̂l � � 
l �0���

�0��� − 
l
��̂l, with �̂�0� = 1̂.

�6.1�

What is required at this stage is to find a general expression
for zl��0���� as a functional of the order parameter and to
perform a variational analysis on the resulting effective ac-
tion. This is equivalent to calculating the functional determi-
nant in Eq. �2.5�, which appears within a more conventional
treatment. This is a difficult problem, which is intimately
related to the problem of dynamics of a two-level system in
a time-dependent magnetic field �generalized Landau-Zener
problem�, described via nonlinear differential equations that
have known analytic solutions only in a few special cases.
While to determine the exact dynamics of pseudospins under
an arbitrary perturbation, �0���, may not be possible, one can
still get further insights by taking advantage of the recent
progress in understanding nonequilibrium BCS
superconductivity12 and the problem of dissipation due to
externally driven two-level systems,25 where exact solutions
can be obtained for a wide class of external perturbations
associated with elliptic functions. Below, we explore solu-
tions to Eqs. �6.1� in some special cases and generalize the
results to express the functional determinant that arises
within this class of dependencies in a compact form.

However, let us start with a general analysis of the
imaginary-time Bogoliubov-de Gennes, Eqs. �6.1�. Let us as-
sume first that �0���=�0�−��, i.e., that it is an even function,
which may occur “naturally” or via a periodic continuation
from the physical imaginary-time interval, �0,�� �all conclu-
sions below can be generalized easily to the case where
�0���=�0�2�0−���. Let us also consider a Nambu spinor

����= � u���
v��� � and look for a solution to the following equa-

tions:
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��u = 
u + �0���v ,

��v = − 
v + �0���u �6.2�

without specifying initial conditions. We also require that
�0�0�=�0��� since it is a field that arises from a path inte-
gral in imaginary time. The corresponding function may
have a “natural” period commensurate with � or a single
“accidental” period and in the latter case we shall periodi-
cally continue the function, �0��� defined on �� �0,��, such
that it satisfies �0���=�0��+�� , ∀�.

Since we assumed that �0���=�0�−��, the existence
of a solution �1���= � u���

v��� � immediately implies that
�2���= �−i�̂y��1�−���i�̂y� is also a linearly-independent solu-
tion. Hence a general solution to Eqs. �6.2� has the form

���� = C+�u���
v���

� + C−�− v�− ��
u�− ��

� , �6.3�

where C	 are arbitrary constants determined by the initial
conditions. Note that to determine the “density matrix,” �̂l, in
Eqs. �6.1�, we need to find two solutions that satisfy the
initial conditions, �1��→0�= � 1

0 � and �2��→0�= � 0
1 �. Let

u�0�=u0 and v�0�=v0 be the initial conditions of a solution,
�1���, that we assume known. Then, from Eq. �6.3�, we de-
termine the solution that satisfies the first required initial
condition �i.e., spin-up at �=0� as follows

�1��� =
1

u0
2 + v0

2�u0u��� + v0v�− ��
u0v��� − v0u�− ��

� . �6.4�

Per the same argument as above, the time reversed to this
solution, �2���= �−i�̂y��1�−���i�̂y� satisfies the other initial
condition �i.e., spin-down at �=0�. Therefore, we conclude
that if we know any solution to Eqs. �6.2�, we can construct
the 2�2 “density matrix” as follows:

�̂��� = ��1���;�− i�̂y��1�− ���i�̂y�� , �6.5�

where the solution, �1���, and its time reversed form the
columns of �̂���. This results in the following “partition
function” �functional determinant� of interest:

z��0���� =
u0�u��� + u�− ��� + v0�v��� + v�− ���

u0
2 + v0

2 .

�6.6�

These results can be readily generalized to the case,
where the order parameter is an even function with
respect to an arbitrary �0� �0,��, i.e., if �0���=�0�2�0−��.
The time reversal operation that generates another
linearly independent solution can be written as follows
�2�� ,�0�= �−i�̂y��1�−� ,−�0��i�̂y�, where �1�� ,�0� is a solu-
tion satisfying the initial condition �1�0,�0��� 1

0 � and,
which itself can be constructed out of an arbitrary solution as
follows ����=C+��0��

u��−�0�
v��−�0� �+C−��0��

−v��0−��
u��0−�� �.

B. Bogoliubov-de Gennes equations and supersymmetric
quantum mechanics

We see that if we know any particular solution to Eqs.
�6.2� with arbitrary initial conditions, the problem of calcu-
lating the functional determinant is solved. However, it is of
course the main challenge to find a particular solution. To
shed light on the complexity of this general problem and to
obtain a further interesting insight, we now take a detour to
point out a direct connection between the solvability of
Bogoliubov-de Gennes Eqs. �6.2� and supersymmetric quan-
tum mechanics.

Let us introduce the following functions:

p��� = u���v���, R+��� =
v���
u���

, and R−��� =
u���
v���

.

�6.7�

From Eqs. �6.2�, we find

� ��p��� = �0���p����R+��� + R−����
��R+��� = − 2
R+��� + �0����1 − R+

2����
��R−��� = 2
R−��� + �0����1 − R−

2���� .
� �6.8�

The function, p���, is expressed in terms of the other two
related functions R+���R−����1:

p��� = p0 exp
	
0

�

ds�0�s��R+�s� + R−�s��� , �6.9�

where p0 is a constant of integration that can be set to one,
p0=1, since we are looking for an arbitrary solution. We see
that Eqs. �6.8� for R	��� are represented by a rather general
Riccati equation, which has been studied for some 300 years
and which has known analytic solution only in a limited
number of cases. But let us however proceed further and
simplify the form of these equations by introducing the fol-
lowing new variables:

x��� = 	
0

�

�0�s�ds, W��� =



�0���
, and r	���

= R	���	W��� . �6.10�

We now assume also that �0��� does not change sign �which
in fact is a requirement if phase fluctuations have been elimi-
nated, since a change of sign in the order parameter should
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be incorporated into its phase dynamics�. In this case, we can
unambiguously determine ��x� and treat all functions in-
volved as functions of x. We get

r	�x� + r	
2 �x� = 1 + W2�x�	W��x� � 1 + V	�x� .

�6.11�

These are Riccati-type equations as well but they now have a
form that is reminiscent to equations appearing in the context
of supersymmetric quantum mechanics. To see the connec-
tion, we recall that a generic Riccati equation can always be
reduced to the following form:

f��x� +
���x�
��x�

f2�x� =
���x�
��x�

�6.12�

such that a particular solution to Eq. �6.12� is written explic-
itly as f0�x�=� /�+�−2�const+� ��

��2 dx�−1 and therefore the
question of finding an analytic solution to a generic Riccati
Eq. �6.12� reduces to that of finding explicitly the functions
��x� and ��x�. In our case in Eq. �6.11�, we see that �	�x�
=�	� �x� while the equations for �	�x� have the form

Ĥ	�	�x� = �−
d2

dx2 + V	�x���	�x� = − �	�x�, x � �0,L� ,

�6.13�

where L=�0
��0�s�ds is the period of the potentials,

V	�x�=W2�x�	W��x�, and W�x� is defined in Eqs. �6.10�.
We see that the operators Ĥ	 in the right-hand side of Eqs.
�6.13� are Schrödinger operators associated with two super-
potentials V	�x�, which have the canonical form of those in
supersymmetric quantum mechanics26 and which in our case
are determined by the underlying dynamics of the order pa-
rameter. Furthermore, since the �0��� has been periodically
continued, Eqs. �6.13� are actually Schrödinger equations in
a periodic superpotential.

Even though, for our purposes what is really needed is the
“wave-function” associated with just one �negative-energy�
state, E=−1, we can easily examine whether the supersym-
metric Schrödinger equations admit zero modes �they do
not�. For this we can follow Ref. 27 and notice that in a
periodic potential the wave functions are the Bloch-Floquet
states, which for a zero mode, if it were to exist, would
translate into the condition �0,	�x+L�=e	��0,	�x�, with
�=�0

LW�x�=�
. Since, the real factor � is nonzero �apart
from the state with 
=0�, there are no zero modes, the Witten
index is zero, and therefore the supersymmetry is broken for
our conventional s-wave superconductor. Admittedly, the
significance of this fact is unclear �at least for topologically
trivial superconductors studied here� but what however may
be important is the fact that the existence of analytic solu-
tions to the underlying Bogoliubov-de Gennes, Eqs. �6.1�,
should be related to the existence of solvable supersymmet-
ric potentials and vice versa. Another interesting approach
that potentially may lead to progress would be to study qua-
siclassical solutions to Eqs. �6.13�, where the WKB method
is known to work very well �it is exact in many notable
cases�. We shall however leave these questions for future
work and explore below another means to treat the

Bogoliubov-de Gennes equations to calculate the functional
determinant of interest.

C. Derivation of a compact expression for the functional
determinant

1. A solvable case with nontrivial quantum dynamics
of the order parameter

Up to this point, we have considered general properties of
the Bogoliubov-de Gennes, Eqs. �6.1�, and found just one
explicit solution corresponding to the “trivial” case of a con-
stant order parameter, thereby recovering classic BCS theory
in this language. For a further progress, it is desirable to
examine the properties of some other exact solutions in less
trivial cases but as noted above the number of known solv-
able cases is quite limited. Fortunately, some additional in-
sight comes from recent progress in the closely related prob-
lem of nonequilibrium BCS superconductivity. There is a
whole class of new solutions that have been recently ob-
tained that not only admit exact analytic treatment of pseu-
dospin real-time dynamics but also amazingly satisfy the
mean-field self-consistency constraint �for some specific
real-time dynamics�. Even though, as we shall see below,
these solutions for �0��� are not at all optimal for minimiz-
ing the imaginary-time action in equilibrium, let us neverthe-
less examine some associated exact solutions for the density
matrix. We will present below the simplest such solution,
which is the imaginary-time version of the Ansätz proposed
by Levitov et al.10 That is, let us seek the function, R+���,
�see, Eqs. �6.7� and �6.8�� in the form

R+��� = 2
f��� − ḟ��� , �6.14�

where we, following Ref. 10, identify f���=�0
−1��� so that

the equation for f reads

f̈ f = ḟ2 − 1. �6.15�

This yields

�0
−1��� = f��� = �−1 cos���� − �0�� , �6.16�

where � and �0 are arbitrary constants for the purpose of
satisfying Eq. �6.15�. However, we also have to satisfy the
periodicity requirement for the order parameter,
�0�0�=�0���, which leads to two possibilities: �i� if �
=2n /�, with n�Z, the solution in Eq. �6.16� is “naturally
periodic” with the period commensurate to �; �ii� if �
�2n /�, but �0=� /2, it is an “accidentally periodic” solu-
tion. As we shall see below for the purpose of minimizing
the imaginary-time action the latter “accidental” periodicity
is much preferable, while the naturally periodic solution is
not even allowed in the case of Eq. �6.16�.
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In either case, the Ansätz in Eq. �6.14� immediately leads
to the following solution for R+���=v��� /u���:

R+��� =
2


�
cos���� − �0�� + sin���� − �0�� �6.17�

and for the function p���=u���v��� �see, Eq. �6.9��

p��� =
1 + �/�2
�tan���� − �0��

cos���� − �0��
e2
��−�0�. �6.18�

These solutions in Eqs. �6.17� and �6.18� together with Eqs.
�6.4�, �6.5�, and �6.7� determine the full “density matrix”
�i.e., the solution to the original Eqs. �6.1� as follows�

�̂��� =��� + tan���0���� + tan���� − �0���
� + tan���� − �0��

cos���0�
� + tan���0�

cos���� − �0��
cos−1���0�cos−1���� − �0�� � e
�

1 + �2

+�cos−1���0�cos−1���� − �0��
− � + tan���0�
cos���� − �0��

− � + tan���� − �0��
cos���0�

�� − tan���0���� − tan���� − �0��� � e−
�

1 + �2 , �6.19�

where we introduced �=2
 /�. One can explicitly verify that
�̂��� given by Eq. �6.19� above indeed satisfies Eqs. �6.1�
together with the initial condition �̂�0�=1̂.

The solution in Eq. �6.19� looks complicated, but for the
purpose of calculating the functional determinant �or equiva-
lently the “partition function,” zl��0�����, we do not need its
full form but need just its trace at �=�. Calculating this
trace, we find an interesting result for this particular choice
of the order parameter

zl� �

cos��� − ��0�� = Tr �̂��� = 2 cosh�
l�� , �6.20�

which as we see does not depend on �0��� at all
�neither on frequency nor on �0� and is equivalent to a pseu-
dospin not subject to any time-dependent �0���: i.e.,
zl�� /cos����−�0���=zl�0�. This is a very curious result in-
deed, because it suggests that the functional determinant may
have a much simpler form than the actual “density matrix”
used as a tool to calculate it.

To complete the analysis of this nontrivial fluctuation, let
us examine the action evaluated for this particular
“trajectory” of �0���, which has the form: S��0����
= �2

g̃ �0
� d�

cos2���−��0� −�l�Lzl�0�, with zl�0� given by Eq. �6.20�.
We notice that the first term diverges for the trajectories with
“natural periodicity” because �0��� changes sign, which is
not allowed if the phase fluctuations have been eliminated,
but in any case such trajectories do not contribute to the
partition function at all. If however �0=� /2 and ��� �i.e.,
the order parameter is positive, ∀�� �0,���, we find imme-
diately that the contribution to the action is

S� �

cos��� − ��/2�� =
2�

g̃
tan���� + SFG, �6.21�

where the last term is the action of a non-interacting Fermi

gas �cf., Eq. �6.20�� and the first one is the energy cost to
have a fluctuating order parameter in the form of Eq. �6.16�.
Since there is no means to compensate this energy cost by
adjusting the “negative-energy” term associated with zl, we
conclude that the chosen trajectory of �0��� is a low-
probability event in a low-temperature superconducting state.
Note that since � must be kept smaller than T, instantons
of this type will completely die out in the ground state but
they may appear as classical excitations at higher tempera-
tures, including even the normal state.

2. Functional determinant on a class of elliptic functions

Section VI C 1 shows that while a tour-de-force deriva-
tion of the density matrix for a nontrivial fluctuating order
parameter is not impossible, but generally is quite compli-
cated, the actual result for the functional determinant may
look very simple. To understand the origin of the “mysteri-
ous” simplification of the complicated density matrix in Eq.
�6.19� to the very simple-looking trace in Eq. �6.20�, we will
rely on the recent work of Yuzbashyan12 and a related work
of Dzero and the author.25

Let us consider a particular quantum trajectory of the or-
der parameter �0��� and analytically continue this function
from ��R to complex values z=�+ it�C. One can formu-
late a sensible general framework in terms of a z-dependent

S matrix, Ŝ�z�, but we will consider here only its analytically
continued form on the real-time axis �which is equivalent to
a Feynman-Wick rotation at T=0�. Let us now use this ana-
lytical continuation to relate the Bogoliubov-de Gennes
Eqs. �6.1� for the density matrix in imaginary time to the
corresponding Schrödinger equation for the S matrix in real
time t
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i
� Ŝl

�t
= ĥl�it�Ŝl�t� = � 
l �0�it�

�0
��it� − 
l

�Ŝl�t�, with Ŝl�0� = 1̂.

�6.22�

where �0�it� and ĥl�it� are symbolic notations for the dy-
namic order parameter and the Hamiltonian properly analyti-
cally continued to real times, correspondingly. The Hamil-

tonian, ĥl�it�=Re �0�it��̂x+Im �0�it��̂y +
l�̂
z= �bl · �̂� /2,

belongs to the two-dimensional representation of the Lie al-
gebra, su�2�, while the unitary S matrix belongs to the two-
dimensional representation of the SU�2� group. Note that
there is no need to specify the dimensionality of the matrix
representation of operators in Eqs. �6.22�, which can be
viewed as an equation of motion in the abstract group, i.e.,

ĥl�it��su�2��so�3� and Ŝ�t��SU�2� , ∀ t.
We can also write an associated Schrödinger equation for

spinor wave function, �= �
�↑
�↓

�

i�̇ = � 
l �0�it�
�0

��it� − 
l
�� . �6.23�

Just like in Sec. VI A, we can argue that if we know a par-
ticular solution to Eq. �6.23� that satisfies an arbitrary initial
condition, we can always construct another linearly indepen-
dent solution with the help of a time-reversal operation that
now reads �−i�̂y����t��i�̂y� and hence a full S matrix can be
constructed using one particular solution to Eq. �6.23�. Let us
note here that a key motivation for studying the analytically
continued form of the Bogoliubov-de Gennes, Eqs. �6.1� and
�6.2�, is that if we know the solution to Eqs. �6.22� or just a
particular solution to Eq. �6.23�, which has the familiar form
of a Schrödinger equation, we should be able to analytically
continue the result back to imaginary time �so that in some

sense Ŝ�−i��→ �̂���� and therefore calculate the functional
determinant.

Now, let us narrow down a class of functions considered
from that of arbitrary order parameters �analytically
continued from the values �� �0,�� to complex arguments�,
�0�z�, to those that are periodic along the it axis, i.e.,
�0�z�=�0�z+ i�t�, where �t�R is the corresponding period.
Let us also assume that the original fluctuation is a meromor-
phic and periodic function along the � axis as well, i.e.,
�0�z�=�0�z+���, which is either due to a natural periodicity
with the period commensurate to the inverse temperature
��=� /n or some other period unrelated to the fact that the
relation �0�0�=�0��� must hold �see, e.g., previous Sec.
VI C 1, where depending on the parameters both cases can
be realized�. This narrower class of functions represents el-
liptic functions,28 with primitive periods �� and i�t, which
are arbitrary constants at this point.

If �0�z� is an elliptic function with the primitive periods
��� , i�t� as defined above, then the Schrödinger, Eqs. �6.22�,
is that describing a spin-1/2 under a periodic-in-time pertur-
bation and so let us look for a solution of Eqs. �6.22� in a

Bloch-Floquet-type form, Ŝ�t�= Ŝp�t�eiEt+ Ŝp
†�t�e−iEt, where

Ŝp�t�= Ŝp�t+�t� is a periodic 2�2 matrix and E is a constant.
On the other hand, we could have used the same Floquet

argument for the original Bogoliubov-de Gennes equation to
argue that the “density matrix” may be written in a
similar form, �̂���= �̂p,+���eE�+ �̂p,−���e−E�, where now
�̂p,	�t�= �̂p,	�t+��� is a “periodic part of the density matrix”
�cf., Eq. �6.19��, and E is the same as before. These argu-
ments suggest themselves to be generalized in the form of a

solution Ŝ�z�= Ŝp,+�z�eEz+ Ŝp,−�z�e−Ez, where z=�+ it and

Ŝp,	�z� is an “elliptic matrix function” of a complex argu-

ment, z�C, such that Ŝp,	�z�= Ŝp,	�z+n��+ im���∀n ,m
�Z.

If we now assume that the periodicity of �0�z� along the �
axis is commensurate with the “natural” period, �, then we

find immediately that Ŝp,	�z�=1 /2 because of the initial con-

dition Ŝ�0�= �̂�0�=1̂ and the imposed periodicity and there-
fore we conclude that

z��0���� = 2 cosh�E�� , �6.24�

where the current assumptions are that �0�z� is an elliptic
function with the periods ��� , i�t� such that � /���Z and �t
is arbitrary and the solution of the Schrödinger Eqs. �6.22�
has a Bloch-Floquet form.

To get a more useful expression for the “partition func-
tion,” z, let us now focus on a dependence �0�it� slow
enough so that there are no level crossings taking place. Con-
sider now a pseudospin, described by the spinor �l�t� of Eq.
�6.23�, evolving from the initial state that is an eigenstate of
the Hamiltonian at t=0, e.g., we can take it to represent a
pseudospin moment opposite to the “initial magnetic field,”
bl�0�= ��0�0� ,0 ,
�, which lies in the XZ-plane. The adiaba-
ticity assumption immediately tells us that the quantum-
mechanical phase “collected” after the completion of a single
cycle, t :0→�t of the magnetic field, b�t�, is given by the
expression in the exponential below

�l��t� =�l�0�e−i��Berry+�dyn�, �6.25�

where �Berry is the Berry phase, which is determined by the
following flux through the area, Ab, swept by b�t� over the
cycle, t :0→�t

�Berry =



2
	

Ab

d Re �0�it� ∧ d Im �0�it�
�
2 + ��0�it��2�3/2 �6.26�

and �dyn is the dynamical phase given by

�dyn = 	
0

�t 
2 + ��0�it��2dt , �6.27�

where the integrand can be easily recognized as an “instan-
taneous eigenenergy” of the corresponding spin Hamiltonian
�which in turn represents the energy of an excitation in a
superconductor subject to such a fluctuation�. Note that we
could have taken the other initial condition corresponding to
a pseudospin pointing along the “initial magnetic field,”
which would have evolved into a state with the dynamical
phase, which is a complex conjugate to �i�dyn� above. We
can recall now that since we are interested in the S-matrix
modulo its periodic part, we can construct the remainder out
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of the two phase factors, which therefore gives exactly the
desired �E�t� that appears in Eq. �6.24�.

If we now make a further simplifying assumption and
consider a fluctuation, �0��−�0�, which is described by an
even function of its argument �see, previous Sec. VI C 1�
such that the analytically-continued �0�it� is also real-
valued, we immediately find that the effective “magnetic
field” simplifies to bl�t�= ��0�it� ,0 ,
�. Therefore, the area
swept by any such dependence in the parameter space is zero
and the Berry phase in Eq. �6.26� vanishes identically as
well. Note that this conclusion would also hold if we assume
that the order parameter is an odd function of ��−�0�, such
that it leads to a purely imaginary �0�it� �let us recall that
phase fluctuations in imaginary time have been eliminated�.
Under these assumptions, we can identify the factor arising
from the “nonperiodic” part of the S matrix/“density matrix”
with the dynamical phase, �E�t�=�dyn to obtain the following
result for the functional determinant:

zl��0���� = 2 cosh� ��t
	

0

�t 
l
2 + ��0�it��2dt� , �6.28�

where we have restored the index l that parameterizes the
sites of the original Richardson model.

3. Adiabaticity requirement

Equation �6.28� has appeared after a chain of rather gen-
eral arguments, which however included a number of addi-
tional assumptions. Let us reiterate these assumptions: We
have assumed that �0��� can be analytically continued from
�� �0,���R to the complex plane, C, and that the resulting
function �0�z� is an elliptic function with two primitive pe-
riods ��� , i�t� such that � /���Z. We also have further as-
sumed that the there exists �0�R such that the order param-
eter is either an odd or an even function of the argument
���−�0�, which ensures that the Berry phase vanishes. Fi-
nally, we have assumed that the time dependence of the ana-
lytically continued order parameter, �0�it� is “slow enough,”
such that no level crossings take place.

The last assumption is the most restrictive and one may
wonder about the accuracy and domain of applicability of the
conjecture in Eq. �6.28� and in particular about the meaning
of “slow enough” in the adiabaticity assumption. This ques-
tion has been addressed by Gangopadhyay, Dzero, and the
author in Ref. 25 in the context of two-level-system dynam-
ics in superconducting qubits. Mathematically, Ref. 25 pre-
sented an extended class of exact solutions associated with
elliptic functions describing the driving field �which repre-
sent a generalization of the anomalous solitons discussed in
the amazing paper of Yuzbashyan in Ref. 12�. Here we reit-
erate only key facts relevant to our paper.

The following functional dependencies of �0�it� admit ex-
act explicit solutions of the associated Eqs. �6.23� and �6.22�:

�0�e,it� =�a +�+
1 − �+ sn2��t,��
1 + �− sn2��t,��

, �6.29�

where e= �e1 ,e2 ,e3� is a shorthand to describe three param-
eters that appear in the following equation �cf., Eq. �6.15��,
ḟ2= �f −e1��f −e2��f −e3�, and are subject to the constraint

e1+e2+e3=0. A solution to the equation for f above can be
expressed in terms of the Weierstrass elliptic function,
which is related to the order parameter in Eq. �6.29�. The
other constants in Eq. �6.29�: �a, �+, �, and �, are
not free but are determined uniquely by e �Ref. 25�
�e.g., �= �e2−e3� / �e1−e3��. Finally, the function sn�· ,�� in
Eq. �6.29� is the doubly periodic Jacobian elliptic function.

The derivation of the associated solution involves Bloch
representation of Anderson pseudospins as follows
M�t�= 1

2�
†�t��̂��t�, where of course M2�t��1 /4 so that

M�t��S2, which is the standard Bloch sphere. The equations
of motions for the Bloch vectors follow from the
Schrödinger equation in a standard way and yield the famil-
iar Bloch equations

Ṁ�t� = − i�†�t���̂, ĥl�it����t� = bl�t��M�t� , �6.30�

where the “magnetic field” in the cross product is exactly as
in Sec. VI C 2: bl�t�= ��0�it� ,0 ,
l� with �0�it� given by Eq.
�6.29�. Therefore, the equations of motion in Eq. �6.23� in
the SU�2� group have been reduced to equations of motion in
Eq. �6.30� on a sphere, S2. Let us recall that
S2=SU�2� /U�1�, therefore Eq. �6.30� has less direct informa-
tion than the original Schrödinger equation. It turns out that
the “missing part” is exactly the sought after overall time-
dependent U�1� phase of the wave function, which we expect
to reduce to the sum of the Berry phase and a dynamic phase
discussed in the previous Sec. VI C 2 �in the case of depen-
dence in Eq. �6.29�, the Berry phase is zero�.

Using the Ansätz proposed by Yuzbashyan in Ref. 12, one
can find25 the solutions, M�t�, to Eqs. �6.30�, expressed in
terms of elliptic functions with the same periodicities that the
elliptic function in Eq. �6.29� in accordance with the sug-
gested generalization of the Floquet argument to elliptic
functions, as discussed in the previous Sec. VI C 2 Using
these exact solutions one can construct the full S matrix de-
scribing the motion in SU�2�. It can be done by parameter-
izing the components of the spinor in Eq. �6.23� as follows
�↑/↓�t�= 1

2
�a↑/↓�t��ei��t��i/2��t�. One can see that while the am-

plitudes and relative phase are directly related to the “instan-
taneous” direction of the Bloch vector �a↑/↓�t��=1	2Mz�t�
and ��t�=arctan�My�t� /Mx�t��, the common phase ��t� de-
pends on the trajectory in a nonlocal way and to determine it,
one has to go back to the Schrödinger, Eq. �6.23�. This in-
deed can be done and the phase, �, can be found �this part
has to be done numerically for generic parameters�. The
main conclusion of this analysis is that if �a is small, this
exact phase is essentially indistinguishable from the dynamic
phase described by Eq. �6.27� �however, for any nonzero �a,
Eq. �6.28� is not exact�. As �a increases up to a critical
value, �a

�cr�, level crossings start taking place and the abso-
lute value of the quantal phase is suppressed compared to the
adiabatic result. In all cases considered, the adiabatic quantal
phase is either equal or larger than the exact phase, and
therefore it can be viewed as an estimate from above. Ref. 25
also indicates that for all �a��a

�cr�, the adiabaticity condi-
tion is satisfied and in this case the compact �6.28� expres-
sion for the functional determinant can be used.
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4. Explanation of the “Fermi gas” result obtained
in the solvable case of Sec. VI C 1

This discussion was initially motivated by the “paradox”
found in the fully solvable case described in Sec. VI C 1. We
remind that the contribution to the action of a pseudospin
moving in the presence of a nontrivial fluctuating �0��� de-
scribed by Eq. �6.16� turned out to be completely indepen-
dent of the parameters of this fluctuation and was found to be
identical to the corresponding contribution expected in a
Fermi gas, i.e., in the absence of any order parameter what-
soever, �����0. Another part of the “paradox” was that the
full solution for the density matrix, �̂���, was very cumber-
some in Eq. �6.19� and the simplification occurred at the final
stage of calculating its trace, which led us to Eq. �6.20� for
Tr �̂l���=2 cosh�
l��.

These paradoxes can be now resolved with the help of
Eqs. �6.28� and �6.29�. One can consider various limits of the
function in Eq. �6.29�, in particular, that of �a→0, which
leads to the following expression of the dynamic order pa-
rameter considered previously by Yuzbashyan12 and Levitov
et al.:10

�0�e,it���a→0 = � dn��t,
2�
1 + �

� . �6.31�

On the other hand, the limit �→1 leads to sn�u ,1�=tanh u
and Eq. �6.29� reproduces the anomalous soliton of Ref. 12.
If we now take both limits, i.e., �→1 and �a→0, we find

�0�e,it���a→0;�→1 =
�

cosh��t�
. �6.32�

An analytical continuation of this function to imaginary time
yields �0�e ,�� ��a→0;�→1=� /cos��t�, which is exactly the
soliton studied in Sec. VI C 1. Note that this soliton is not an
elliptic function, but a circular function, because it has only
one incommensurate period in the � “direction.” However, it
is a limiting case of a proper elliptic function with its period
�t taken to infinity. Therefore, per the arguments of Sec.
VI C 2 and using Eq. �6.28�, we are to write the “partition
function” as follows:

zl��/cos��t�� = 2 cosh� lim
�t→�

�

�t
	

0

�t 
l
2 +

�2

cosh2��t�
dt�

= 2 cosh��
l� . �6.33�

Now, it is easy to see the origin of the paradoxical result in
Eq. �6.20�: since cosh−2��t� decays exponentially with in-
creasing t, the soliton term in Eq. �6.33� vanishes in the
��t→�� limit and does not contribute to the integral. We
therefore recover the correct result in Eq. �6.20�.

Now that the origin of the result in Eq. �6.20� in the ex-
actly solvable case is understood, we can use the exact solu-
tion to get another insight into the range of applicability of
Eq. �6.28�. The list of assumptions for the validity of Eq.
�6.28� includes that � be a natural rather than an accidental
period of �0��� �enforcing this periodicity via a periodic rep-
etition of �0��� from �� �0,��→R would not necessarily
work because the resulting periodically continued function
may not have the desired analytical properties and any argu-

ments based on them would become unreliable�. Hence, we
do not expect Eq. �6.28� to work in the accidentally periodic
cases but the exactly solvable example in Eq. �6.16� with
�0=� /2 and ∀��R shows that at least in this particular
case Eq. �6.28� does work correctly. It remains unclear at this
stage, whether this result is an artifact of the particular de-
pendence in Eq. �6.16� or it is rather an indication that Eq.
�6.28� applies to a wider class of elliptic functions and their
limits with accidental � periodicity.

D. Contribution of elliptic trajectories to the partition
function

Now let us summarize our findings �conjectures� and
present the following expression for the contribution to the
partition function of those specific elliptic trajectories,
�0���→�0�z��Ell, for which our expression for the func-
tional determinant applies

�ZEll = e−� �
l�L

l	
�0�z��Ell

D��0
2���

2g̃
�e−S������,

where

S������ 
1

g̃
	

0

�

��0����2 − 2�
l�L

ln

��cosh� �2�t
	

0

�t 
l
2 + ��0�it��2dt

+
1

2
�Berry��0�it���� , �6.34�

where just as before �0�it� corresponds to an analytically
continued order parameter, which leads to an elliptic function
with the primitive periods ��� , i�t� or a limit of such an
elliptic function. In Eqs. �6.34�, we have also included the
Berry phase contribution, which in general should be
present, but whenever �0�it� is either purely real or purely
imaginary, the Berry phase vanishes identically.

We have already verified that the action in Eqs. �6.34�
reproduces the exact results in certain exactly-solvable cases.
Note here that the classic BCS result in Eq. �4.9� is certainly
reproduced exactly as well, because a constant function rep-

resents a trivial elliptic function, �0�����0�it�� �̄=const.
and so we can use Eqs. �6.34�, and after an integration re-
cover the correct “partition function” of a spin in a constant
magnetic field, zl

�0�=2 cosh�El��, which corresponds to the
BCS mean field. One can also argue based on Eqs. �6.34�
that the classical mean field is indeed a true minimum on the
space of these elliptic functions, Ell. Let us consider an order

parameter �0���= �̄+�����, where ����� is in some sense
small. Let us expand the action in Eqs. �6.34� assuming that
����� does not induce a Berry phase. Hence a correction to
the relevant part of the action is �we consider the low-
temperature limit, �→��
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�S2 = − 2�̄0 �
l�L

�

�t
	

0

�t ���it�

l

2 + �̄0
2
dt �6.35�

Note now that the integral above can be equivalently written
as an average of ���it� over an infinite number of periods,
�
�t

�0
�t���it�dt� limn→�

�
n�t

�0
n�t���it�dt. Therefore, the contour

of integration over z=�+ it is that going from 0 to i�. The
difference between this integral and that going along the �
axis is ��0

i����it�dt−�0
�→������d��= �−2i��zi

res ���zi�=0,
i.e., it is given by the sum of all residues of ���z� enclosed in
the first quadrant. It is equal to zero, per one of the
elementary properties of elliptic functions,28 which
states that the sum of all the residues of an elliptic
function inside a period-parallelogram always vanishes.
Therefore, one can write the first variation in the both parts
of the action in terms of the same function, �����:
�S=2�̄0��1 / g̃�− �̄0�l�L�
l

2+ �̄0
2�−1/2��0

�→�d������=0, which
is satisfied for the BCS mean field.

One may wonder, if one can use the analytical properties
of elliptic functions to bring the integral that appears in Eqs.
�6.34� to the � axis in a similar way, i.e., to the form
→�0

�
l
2+ ��0����2? We know however that this substitution

cannot generally be correct because some nontrivial
solutions that we have analyzed manifestly contradict
this assumption. However, we have proven above that
for all relevant fluctuations in the immediate “vicinity” of the
classic BCS mean field the substitution above would work.
One can explicitly verify that the interesting property
of this �generally incorrect� substitution is that the

variational analysis of the functional, S̃�f0����
=�0

�d� 1
g̃ �f0����2−2�l�Lln�cosh� 1

2�0
�
l

2+ �f0����2d��� �i.e., the

constraint �S̃
�f0

=0� indeed immediately selects the classical

mean field f0���� �̄BCS=const. as the only saddle point.

Hence, one can use the expression for S̃ above to determine
the contributions to the partition function due to Gaussian
quantum fluctuations in the vicinity of the BCS mean field
�for simplicity, we consider the low-temperature limit only�.
The result is not unexpected and is quite “boring,” taking the
following form for the usual BCS superconductor �i.e., the
parameter space, L, is momentum space�

Znear BCS = e−FBCS/T	 D������
g̃

�e−9V/4g�0
���2���d�,

�6.36�

where FBCS is the energy of the classical mean-field BCS
state, T=�−1, and V is the actual physical volume and hence
the contribution of these mesoscopic fluctuations to observ-
ables in a bulk system is negligible.

It is alluring to attempt a variational analysis of the action
in Eqs. �6.34� to see if there could exist other saddle points
apart from the classical mean field. However, the variational
analysis would be problematic, because the action in Eqs.
�6.34� contains “apples and oranges,” that is two functionals
of different functions, �0��� and �0�it�, which are related in

a nontrivial way via an analytical continuation. However, to
make the case that nonlinear soliton contributions are impor-
tant �we should distinguish here between instantons, which
are trajectories that connect classical minima,29 and fictitious
at this stage new minima, which we dub solitons�, one does
not necessarily need to find true quantum minima, finding
any quantum trajectory that corresponds to the energy
smaller than mean field would suffice. To clarify the content
of this �open� problem, let us introduce two parameters
�1

2=�−1�0
��0

2���d� and �2 such that ��2 
l
2+�2

2�
= � �2�t

�0
�t
l

2+ ��0�it��2dt+ 1
2�Berry��0�it���. In these notations,

the action in Eqs. �6.34� takes the form �cf., Eq. �4.9��

S��1,�2� =
��1

2

g̃
− 2�

l�L
ln�2 cosh�
l

2 + �2
2�

2
�� .

�6.37�

Since the first term is always positive and the second one is
always negative, we are to look for ways to minimize �1 and
maximize �2. In the classical BCS mean field �1=�2 and
there is no room for any additional variation but in the func-
tional in Eqs. �6.34� such additional variations are, in prin-
ciple, allowed. One can check that the analytical continua-
tion of solitons of the nonequilibrium BCS problem with
natural periodicity do not produce a “good” solution at least
at T=0. If on the other hand, we take Eqs. �6.34� as a given
functional and consider various trial functions without at-
tempting to prove that they actually satisfy the formal do-
main of validity of the Ansätz, we immediately find a variety
of dependencies that do “better than classical mean-field” in
term of energetics. However, these “results” should be taken
with a grain of salt because there is no way to determine the
actual range of validity of Eqs. �6.34� beyond those depen-
dencies associated with known integrable spin dynamics and
the most natural explanation for any accidental solution ob-
tained within a trial-and-error analysis of Eqs. �6.34� is that it
is probably beyond the applicability of the method. On the
other hand, there appears to exist no proof that such solitons
are impossible. Looking at the rich structure of the functional
determinant, it appears conceivable that there exist trajecto-
ries in the huge functional space spanned by, ����, that do
not just collapse into the mesoscopic term in Eq. �6.36�, but
instead provide more noticeable contributions to the action.
A numerical analysis of some nonlinear solutions, guided by
the analytical result in Eqs. �6.34�, will be published else-
where.

VII. SUMMARY

This paper presents an analysis of nonperturbative fluc-
tuation phenomena in the pairing model. The key step of this
analysis is a decomposition of the partition function of the
Richardson model into spin and pseudospin terms. It is
shown that such factorization is possible for a generalized
Richardson model that includes both BCS and spin interac-
tions. Even though we have not presented here a theory to
describe both types of nontrivial interactions on an equal
footing, the development of such an extension is

NONPERTURBATIVE QUANTUM DYNAMICS OF THE ORDER… PHYSICAL REVIEW B 82, 054511 �2010�

054511-15



straightforward19 and would lead to a two-order-parameter
theory expressed in terms of two “global” Hubbard-
Stratonovich fields.21 The analysis of phase fluctuations pre-
sented here indicates that these interactions will be compet-
ing and that such competition can be enforced via a
commutation relation between the density and spin density
and the overall phase. However, the present paper has fo-
cused on the analysis of a simpler canonical Richardson
model that has no magnetic interactions. Even though the
spin sector of this Richardson model is trivial, the existence
of this �single-particle� sector is important for the possible
existence of any nontrivial fluctuations of the amplitude of
the order parameter in the low-temperature phase.

The main technical part of the paper involves a calcula-
tion of functional determinants that appear in the nonlinear
effective action expressed in terms of the Hubbard-
Stratonovich field. We have shown that the Anderson pseu-
dospin language and, in particular, its coherent-state path-
integral representation lead to practically useful and
physically intuitive insights into the structure of the func-
tional determinants for nontrivial quantum trajectories.
Therefore, this approach may be much preferable to the con-
ventional Grassmann path integral method. We have shown
that a functional determinant is given by the trace of a den-
sity matrix that satisfies the Bogoliubov-de Gennes equations
in imaginary time. This leads to a differential equation of the
Riccati type, which is directly related to the supersymmetric
Schrödinger equation with superpotentials determined by the
imaginary-time dynamics of the order parameter, ����. Let
us note here that a particularly promising direction for fur-
ther research could be to use the WKB method to treat the
relevant differential equations.

In Secs. VI C 2 and VI D, we proposed an explicit, com-
pact expression for the functional determinant for a certain
large class of elliptic functions and the arguments that led us
to the conjecture in Eqs. �6.34� involved an analytical con-
tinuation of the Bogoliubov-de Gennes equations in imagi-
nary time to the real-time axis �or more generally to the
complex plane, z=�+ it�, such that the problem could be
mapped onto that of a two-level system in a time-dependent
magnetic field determined by quantum dynamics. This is a
known, very complicated problem but we have taken advan-
tage of some recent exact results and our recent work on an
extension of these results to analyze a family of exact solu-
tions that are associated with elliptic functions. These results
have led us to Eqs. �6.34�, which provides a useful intuition
for the effective action of the model and suggests that the
functional determinant, that is often treated as a thing-in-
itself, can actually be calculated and is related in a very
straightforward way to the dynamical and Berry phases of a
pseudospin moving in a “magnetic field,” determined by the
quantum dynamics of a fluctuation. Let us reiterate however
that a formal justification of our solution applies only to
adiabatic dependencies on the specific class of elliptic func-
tions with the periods along the imaginary and real-time
axes.

An important open question is whether the considerations
presented in this paper can be generalized to other types of
functions, ����, which are not associated with any elliptic
functions that lead to integrable pseudospin dynamics. A par-

ticularly promising avenue here could be to use the reverse-
engineering approach for constructing exact solutions as de-
scribed in Refs. 25 and 30, which effectively implies a
change in variables from the Hubbard-Stratonovich field,
����, to the generators, ��t�, which govern the dynamics of

the S matrix, Ŝ�t�=exp�− i
2��t� · �̂�, satisfying the proper

Bogoliubov-de Gennes equations. It would also be interest-
ing to see whether a chaotic rather than integrable
dynamics31 can be realized under any circumstances in this
model. Quite generally such dynamics, if at all possible, are
not expected to lead to energetically favorable contributions
to the action, because the “trivial” term that gives an energy
penalty to any nonzero order parameter configuration corre-
sponds to the average of ���2 while the second non-trivial
term that favors superconductivity contains contributions
from different sites, and if the dynamics exhibit a “chaotic
behavior” in the parameter space, L, the signs in the second
term would fluctuate strongly from site to site and are ex-
pected to average out to zero instead of lowering the corre-
sponding energy. This argument supports the approach to use
regular elliptic trajectories that describe a synchronized col-
lective behavior of the pseudospins. Another open question
relates to the role of the Berry phase in the functional deter-
minant in Eqs. �6.34�. All exact solutions we have analyzed
�that are sensible to describe thermodynamics, where the
constraint ��0�=���� must be imposed� have a trivial �zero�
pseudospin Berry phase. This however represents a limita-
tion in our ability to solve Eqs. �6.1�, rather than an indica-
tion that Berry phase terms are unimportant.

Finally, we reiterate the main question posed in this paper
and the arguments of the last Sec. VI D, which suggest that
nonperturbative soliton trajectories that coexist with the clas-
sical mean field are not impossible and in fact the rich gen-
eral structure of the functional determinant suggests that the
construction of such quantum fluctuations may be possible at
least in some modification of the model �which may involve
interactions for real spins�. Generally, the right question to
ask would be whether there exists any fermion model that
exhibits breaking of continuous symmetry and such that its
low-temperature phase allows nonperturbative soliton solu-
tions for a component of the Hubbard-Stratonovich field that
is normally considered “massive?” In other words, can the
nonlinear effective action for the Hubbard-Stratonovich field
develop any other minima apart from the classical mean
field? A proof that no such solutions exist would confirm the
fundamentals of classical spontaneous symmetry breaking
and mathematically would imply that there is no need to
study complicated nonlinear actions at T=0 �such as the non-
linear effective action in Eq. �2.6�� and that in an infinite
system they should crossover to a functional delta function

of the type, e−S���������������− �̄MF�, cf., Eq. �6.36�. On the
other hand, even a single example of an order-parameter tra-
jectory that is energetically beneficial to the classical mean
field would seriously question this fundamental conjecture.
We know that any such trajectory, if at all possible, cannot be
anywhere near classical mean field �in the functional space
of allowed fluctuations� but the possibility of a nonperturba-
tive solution not adiabatically connected to the mean field
has certainly not been ruled out.
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